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Abstract—In this paper, we try to solve site selection problem
for building meteorological observation stations by recommend-
ing some locations. The functions of these stations are meteo-
rological observation and prediction in regions without these.
Thus in this paper two specific problems are solved. One is how
to predict the meteorology in the regions without stations by
using known meteorological data of other regions. The other
is how to select the best locations to set up new observation
stations. We design an extensible two-stage framework for the
station placing including prediction model and selection model.
It is very convenient for executives to add more real-life factors
into our model. We consider not only selecting the locations
that can provide the most accuracy predicted data but also how
to minimize the cost of building new observation stations. We
evaluate the proposed approach using the real meteorological
data of Shaanxi province. Experiment results show the better
performance of our model than existing commonly used methods.

Index Terms—location recommendation; site selection; urban
big data

I. INTRODUCTION

IN recent years, people concern not only general weather

conditions such as sunny, windy, rainy and snowy but

also the more detailed and accurate weather condition such

as PM2.5, PM10, and NO2. To some extent, the existing

meteorological observation stations cannot satisfy people’s

requirements any more. Therefore, it is urgent for us to

construct new observation stations. Nevertheless, constructing

a new observation station is both costly and time consuming,

which means that we cannot set up new stations as much as

the existing stations in a short time. In this paper, we mainly

try to answer a practical question: Given a set of existing

stations’ historical observation data, how to select a small

amount of candidate locations to take the lead in constructing

new observation stations.

In reality, there are several challenges. First, we need to

consider the cost of building new observation stations in

the selected locations. Second, we prefer that the selected

locations are homodisperse in map. Otherwise, the result of

selection may be a set of locations concentrated together which
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is obviously not proper. So our main task is to select locations

that can make prediction accurate, construct new observation

stations with low cost, and cover more regions.

In this paper, we propose a two-stage framework. Figure

1 is the overview of our framework. According to different

personalized requirements, the multi-source data and multi-

factors are taken into consideration. By training our selection

model and prediction model, the scores of different locations

are learned which denotes the importance of locations when

we select locations. Then the rank of candidate locations is

obtained. We exploit a Least Squares Method based model to

learn the scores of different locations. The main contributions

of this paper are:

• We solve the problem of how to select the locations

to construct new meteorological observation stations by

multi-source urban big data analysis, including meteoro-

logical data, geographical location data and benchmark

price of industrial land.

• Besides using the traditional least square methods to

constrain the prediction error, geographical location data

is explored to improve the prediction accuracy in our

prediction model because of the assumption that the

more close two locations are, the more similar their

meteorological data becomes. In the selection model, we

would like to select the locations that can cover more

geo-spatial areas considering with the dispersity.

• Besides the factor of geographical location, in the selec-

tion model, we take building cost into account. We would

like to select the locations whose benchmark prices of

industrial land are low. These factors are fused into our

model to learn the importance of locations in order to

meet the personalized needs of decision-makers.

The rest of this paper is organized as follows: In section

2, we present some related works on sample selection and

environmental prediction. In section 3, our model proposed

in this paper is described in detail. The experiments are

introduced and the evaluation of our model is given in Section

4. Finally, we conclude the paper in Section 5.
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Fig. 1. The overview of our framework. According to different personalized requirements, the multi-data and multi-factors are taken into condideration. By
training our selection model and prediction model, the scores of different locations are learned. Then the scores of locations are calculated and the solution
is obtained.

II. RELATED WORK

The research is belong to urban computing [1]. Here, we

review some related works on site selection.

Many selective sampling problems were solved based on

information entropy theory [2], [3], [4], [5] . Hsieh et al [2]

established new stations at the locations that can minimize

the uncertainty of the prediction model. To begin with, they

picked the location with lowest entropy and then put it into

the prediction model as known data. Second, they picked

the second-to-last location which is the location with lowest

entropy in the new prediction model and keep running this

circle. Finally, they selected the top k ranked locations as the

location to construct new stations. Du et al. [6] aimed to find

a set of locations for sensor deployment to best measure the

surface wind distribution over a large urban reservoir. They

solve this problem by finding locations with the largest mutual

information with others based on some heuristics. Erdös et al.
[7] aimed to deploy sensors in an information delivery network

to optimize the detection of duplicate data contents. Wang et
al. [8] leveraged the spatial and temporal correlation among

the data sensed in different sub-areas to significantly reduce

the required number of sensing tasks allocated (corresponding

to budget), yet ensuring the data quality.

There are a lot of ways of predicted data based on different

theories such as matrix factorization [9], [10], [11], [12], [13],

[14], probability, cluster and similarity etc. Zheng et al. [15]

proposed a semi-supervised learning approach based on a co-

training framework that consists of two separated classifiers

to infer the real-time and fine-grained air quality. Zheng et
al. [16] reported on a real-time air quality forecasting system

that uses data-driven models to predict fine-grained air quality

over the following 48 hours.

III. OUR MODEL

As shown in Figure 1, our task is training our selection

model and prediction model, and rank the locations according

to the learned scores.

We divide the whole geo-spatial area into several regions

by administrative divisions. Each region is the basic unit in

TABLE I
NOTATIONS AND THEIR DESCRIPTIONS

Notations Descriptions

A The matrix of meteorological correlation
between any two locations in prediction model

B The matrix of geo-distance correlation
between any two locations

C The matrix of meteorological correlation
between any two locations in selection model

D The importance matrix of coverage area
E The importance matrix of benchmark price

G The matrix of geo-distance between any two
locations

P The matrix of benchmark price

R The matrix of meteorological data in each
location

S The matrix of meteorological data in selected
locations

T The matrix of total distance between any
location to other locations

our prediction model. In some of the regions, there is an

observation station which can provide us the exact record data

of meteorology in the region. The meteorological data could be

represented by Ri(i = 1, 2, ..., n). We assume that m out of n
locations will be selected in our task to construct new stations.

In addition, the real-life factors will be taken into consideration

to rank candidate locations. Symbols and notations utilized in

this paper are given in Table 1. A and B are the coefficient

matrices to be learned in our prediction model. C, D and E are

the coefficient matrices to be learned in our selection model.

A. Prediction Model

The observation data of meteorology in different locations

are correlated with each other in spatial perspectives. Consider

the correlation of the meteorological data between each loca-

tion in these areas, the unknown data can be predicted through

little observed data. That is to say, we use the data observed in

selected locations to predict the data in un-selected locations.

We propose our initial prediction model given by:

min
A
‖R− AS‖F + α‖A‖F (1)
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Fig. 2. The relevance between geographical distance and the difference of
observation data.

where S is the matrix of meteorological data in selected lo-

cations. Matrix A consists of coefficient apk which represents

the correlation of meteorological data between the selected

location p and the un-selected location k. AS is the prediction

of our model. The second term is used to avoid over-fitting.

The geo-distance between regions are also an important

factor in our prediction model. In Figure 2, x-axis represents

the distance between regions and y-axis represents the corre-

sponding difference of the meteorological data. We calculate

the sum of mean absolute error of the thirty years’ thunder-

storm data between every two locations as the corresponding

difference of the meteorological data. It shows the positive

correlation, which means the distance factor is important and

should be considered in prediction model, because the more

close two locations are, the more similar their meteorological

data becomes. We utilize matrix B represents the similarity

between each locations’ distance and put the constrain term

matrix B into Equation 1. The objective function of prediction

model is given by:

min
A,B
‖R− (A+B)S‖F + α1‖Gmin − BG‖2
+ α2‖A + B‖F

(2)

where the first term is used to constrain the errors. The second

term is used to constrain parameter b considering with the

factor of geo-distance. The third item is used to avoid over-

fitting. Matrix B consists of coefficient bpk which represents

the correlation of geo-distance between p and k. R is the matrix

of meteorological data. In the second term BG is optimized

to Gmin , which means the bigger the value of b is, the

more close the two locations are, and the more similar their

meteorological data becomes.

B. Selection Model

Based on the above prediction model, we would like to

select the locations that can help us to make more accurate

prediction to build observation stations. Hence, how to select

the location of these stations is an urgent issue for us now.

First, considering with the accuracy of prediction, we ought

to fuse the errors of prediction into our selection model. The

linear combination of each location’s record data Rp is also

Fig. 3. Score ranking with considering the coverage of selected locations
by the following steps: 1© the first location which is the geographical center
is mapped; 2© map the second location, if the distance between it and the
previous locations are larger than the predefined parameter r; 3© if the distance
between it and the previous locations are smaller than r; 4© its location score
will be multiplied by a coefficient.

used to calculate the prediction. But only m of the most

important locations can be selected. We use the weight of

each Rp to represent the importance of location p. The more

important the location is, The more correlation with others the

location has.

Second, we select the locations those can cover most geo-

spatial areas in map in order to make sure every location in

our province will not leave the selected locations too far. It

can help us to predict the more accurate meteorological data

which can be proved by Figure 2. Nevertheless, coverage area

is a definition that cannot be clearly measured, so we propose

to employ the total distance between one location and other

locations. In case that the selected locations are concentrated

together, we suggest to apply the dispersity to measure the

model. The process of Score ranking with considering the

coverage of selected locations are given in Figure 3.

Third, we should not only consider the accuracy the selected

locations can provide for the prediction model, but also regard

the cost of building new stations. When the decision makers

are facing this kind of selection problems, they also need to

minimize the cost in the whole project. Therefore, we need

to fuse the factor of cost into our model and, in brevity, we

utilize the benchmark price of industrial land to represent the

cost. Then our final model is given by:

min
C,D,E

‖R− CR‖F + β1‖Tmax − DT‖2 + β2‖Pmin − EP‖2
+ β3(‖C‖F + ‖D‖F + ‖E‖F )

(3)

D = Wδ (4)

In which CR represents the prediction of the meteorological

data by the linear combination of the other regions’ obser-

vation data. Hence, the first term in the objective function

represents the square error between the real observation data

and the prediction. The purpose of the first item is to constrain

parameter c. The parameter c·i(c·i =
∑

p cpi) represents the

importance of the location i.
The purpose of the second term is to constrain the coverage

area. Note that the value of parameter d·i(d·i =
∑

p dpi)
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means the importance of the location i in regard of coverage.

w·i(w·i =
∑

p wpi) means the importance of the region in

terms of total distance between location i and others. δi is

0.5 if the location situates at the border or belongs to the

r-radius circle of previous locations. It is 1 otherwise. δi is

the discriminant coefficient as shown in Figure 3. The total

distance and the dispersity approach are leveraged together to

describe the coverage. For the locations at the edge of the map,

we leverage the concept of relative area [17], [18] to remove

them as follows. Firstly, establish the coordinate system for

each location. Secondly, record the amount of the locations

in each quadrant of each location. At last, we use the four

numbers to describe the relative area of each location and if

one of the four numbers is 0 means it locates at the edge.

The third term is used to constrain parameter e and the value

of parameter e·i(e·i =
∑

p epi) denotes the importance of the

location i in terms of the cost. EP is optimized to Pmin, which

means the bigger the value of e·i is, the cheaper the cost is,

and meanwhile the more important the location is.

The fourth term is used to avoid over-fitting. Finally, we

have three essential parts in our selection model. The first

part selects the most important locations for the meteorological

data prediction. The second part chooses the locations which

possess the larger coverage and the third part opts the lower

cost locations. Changing coefficients β1 and β2 can balance

the three factors. At last, top-m biggest value of c·i + d·i + e·i
are figured out and the corresponding regions are the locations

we seek.

C. Model Training

Given the proposed prediction model and selection model,

the objective functions represented in Equation (2) and (3)

can be minimized by the gradient decent approach as in [9],

[11], [10]. Algorithm 1 summarizes the whole procedure of

our framework. Steps 1 to 8 show the details of our selection

model. Steps 9 to 16 show the details of our prediction model.

The space complexity of this algorithm is O(n×k+4n2+4n),
and the time complexity is O(t1 × n2 × k + t2 × n × m ×
k), where n is the number of regions. m is the number of

selected locations. k is the dimension of the meteorological

data. Generally, because of k � n,m, the space complexity

is O(n× k).

IV. EXPERIMENT

In this section, we will introduce the experiments in detail.

The definition of the problem is that there are 22 meteorolog-

ical stations to be built in Shaanxi Province, China, and how

to select the locations.

A. Dataset Introduction

1) Meteorological Data: The meteorological data used

in this paper is provided by Shaanxi Provincial Lightning

Protection Center. It contains the count of thunderstorm days

in each county of Shaanxi. In addition, the ten prefecture-

level divisions of Shaanxi are subdivided into 107 county-level

divisions. But some of them are too small so that they are

Algorithm 1 The Procedure of Our Framework

Input: The matrices of our data, including matrices R, S, G, T,
and P.
Setting the parameters, including iteration count t1, t2,
learning rate l1, l2, and tradeoff parameters α1, α2, β1,
β2, and β3.

Output: The final rank of candicate locations.
The corresponding evaluation of the solution.
The building cost of this solution.

1: Initialize the variable matrices those denote the importance
of locations, including matrices C, D, and E.

2: for n = 1 : t1 do
3: Calculate the gradients of the objective function proposed

in Equation (3) with respect to the variables C, D, and E
respectively.

4: Update matrices C, D, and E with the gradients by the
learning rate l1.

5: end for
6: Top-m biggest value of c·i + d·i + e·i are figured out and the

corresponding regions are the candidate locations.
7: Calculate the building cost and the dispersity of the locations.
8: Output the candidate locations, the building cost, and the

dispersity.
9: Initialize the variable matrices those denote the correlation

of locations in prediction model, including matrices A and B.
10: for n = 1 : t2 do
11: Calculate the gradients of the objective function proposed

in Equation (2) with respect to the variables A and B
respectively.

12: Update matrices A and B with the gradients by the
learning rate l2.

13: end for
14: Predict the meteorological data by the learned A and B.
15: Calculate the prediction error by RMSE and MAE.
16: Output the accuracy evaluation.

merged into near divisions in the provided meteorological data.

In a words, there are 96 divisions in our dataset. Moreover, the

data range is from 1974 to 2011 based on one month intervals.

We utilize the meteorological data before 2000 as the training

set and the other as the test set.

2) Geographical Location Data: The geographical location

data is represented by Global Position System (GPS) coor-

dinate which contains the longitude and latitude. The geo-

graphical distance between two latitude/longitude coordinates

is calculated by using the Haversine geodesic distance equation

proposed in [19]. We crawled the geographical location data

of each county from the Internet.

3) Benchmark Price of Industrial Land: The benchmark

price of industrial land released in 2010 is crawled from

the Internet to approximately represent the cost of building

stations. The benchmark price in Xi’an is almost 13 times

higher than it in Yijun County from which we can see that

it is necessary to take the benchmark price of industrial land

into consideration.

B. Performance Measurements

The evaluation metrics of the prediction accuracy used in

our experiments are Root Mean Square Error (RMSE) and

Mean Absolute Error (MAE). They are the most popular

accuracy measures in the literature of recommender systems

[2], [16], [10] [9]. RMSE and MAE are defined as:
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RMSE =
‖Rtest − (A + B)Stest‖F

|Rtest| (5)

MAE =
‖Rtest − (A + B)Stest‖1

|Rtest| (6)

where Rtest is the real meteorological data. A and B are the

matrices learned by Equation 2. Stest is the real meteorology

data in selected locations. |Rtest| denotes the number of data

in the test set.

For cost comparison, we leverage the total benchmark

price of industrial land in selected locations to approximately

evaluate the cost of building stations. It is defined as COST =
‖Pselected‖1
|Pselected| , where |pselected| is the number of selected

locations. Pselected is the benchmark price of industrial land

in the selected locations.

In fact, the dispersity of selected locations are also im-

portant, which has been illustrated in Figure 2. Therefore,

we employ a measurement of dispersity. The minimum of

the distances between a location to others is calculated by

Disi = min {Disi,1, Disi,2, · · · , Disi,m}, where i is be-

longed to the set of un-selected locations, and m is the

number of selected locations. Then the variance is used to

represent the dispersity as Dispersity = var(DIS), where

DIS = {Dis1, Dis2, · · · , Disn−m}. n is the total number of

regions.

In a word, four measurements including RMSE, MAE,

COST and Dispersity are utilized to evaluate our model, and

the lower, the better.

C. Evaluation

1) Compared Algorithms: We compare our algorithm with

some other commonly used methods,including Divergence,

Rate of Change, K-means, Spectral Clustering, Gaussian Mix-
ture Model (GMM), Artificial Neural Network (ANN) with

back propagation technique, Support Vector Machine (SVM)

and Matrix Factorization (MF).

• Divergence, denoted by
μ1 − μ2

1
2 (σ

2
1 + σ2

2)
, where μ is the mean

of a data set and σ is the variance of the data set. This

approach selects data that have the minimum divergence

value with the center data as a cluster.

• Rate of Change (RC), which is usually used in stock price

prediction. It selects the data that have the minimum rate

of change value with the center data as a cluster.

• K-means, which is one of the most popular methods in

clustering.

• Spectral Clustering (SC), which is one of the most pop-

ular clustering methods based on Spectral Graph Theory.

• Gaussian Mixture Model (GMM), which is one of the

most popular clustering methods aiming at learning prob-

ability density function for soft assignment clustering.

• Artificial Neural Network (ANN). It is simply used as a

classification model for meteorological data prediction.

Fig. 4. Prediction performance comparison of different algorithms based on
RMSE. In addition, the methods in the red box are ours.

Fig. 5. Selection performance comparison of different algorithms based on
MAE. In addition, the methods in the red box are ours.

• Support Vector Machine (SVM) is one of the most popu-

lar supervised learning models that used for classification

and regression analysis.

• Matrix Factorization (MF) is a factorization of a matrix

into a product of matrices. It is usually used to learn the

latent features in recommender system.

Note that the last three algorithms are only used in the

comparison of prediction performance. Our methods includes

NoN, Geo-distance, COST, and ALL:

• NoN, which denotes the appraoch without any factors.

• Geo-distance, which denotes the approach with consider-

ing the factor of geo-distance.

• COST, which denotes the approach with taking the factor

of benchmark price of industrial land into account.

• ALL, which denotes the approach with fusing all pro-

posed factors.

2) Performance Comparison: Figures 4 and 5 show the

performance comparison of different algorithms based RMSE,

MAE, COST, and Dispersity. It can be seen that our ap-

proaches are mostly better than the compared algorithms, es-

pecially in the comparison of COST and Dispersity. Moreover,

from performance comparison, it can be seen that the factors

fused in our model are all effective. When we only consider the

factor of cost, the performance of our model on COST is much

better than other algorithms. When we only take the factor of

geo-distance, our model also reaches the best performance on

Dispersity. If we combine the two factors, our model (ALL)

achieves the optimal solution with balancing the two factors.

Then decision makers can adjust the model according to their

personalized requirements.
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Fig. 6. Discussion on the impact of parameters on performance of our model.

3) Discussion: There are some parameters to balance the

fused factors. In Equation (3), the parameter β1 is the weight

of the importance of geographical Dispersity. In Figure 3. The

parameter r is used to avoid the concentration of selected

locations. In other words, r is designed to control the degree

of dispersity directly. β1 is served to regulate the extent of

importance of dispersity. Both of them are related to the

final performance on dispersity. Figures 6(a) and (b) show the

impact of β1 and r on performance. It can be seen that our

model could provide different solutions according to different

requirements of dispersity.

The cost of building new stations is one of the most

concerned criterions. Adequate capital is the foundation of a

booming company. Thus a cost-saving solution is expected. In

our model, the parameter of β2 is set to manage the degree of

importance of cost. Figure 6(c) demonstrates the effect of β2

on performance of our model in light of the cost of establishing

new stations. Apparently, our model offers various solutions

according to different requirements of cost.

V. CONCLUSIONS

In this paper, we introduced a framework to recommend

locations for solving the problem of site selection, in which

the factors of geographical location and benchmark price of

industrial land are taken into account. It is employed to solve

the practical optimization problem and provide the solution

with more intellegence. The weights of different factors can

be fine tuned according to the personalized requirements.

In our future work, the nonlinear prediction model will be

performed, and more types of meteorological data, more urban

data and more real-life factors will be considered.
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